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L athematics is a human endeavor. Behind its numbers, equa-
£ W Qtions, formulas, and theorems are the stories of the people
who expanded the frontiers of humanity’s mathematical knowledge.
Some were child prodigies while others developed their aptitudes
for mathematics later in life. They were rich and poor, male and
female, well educated and self-taught. They worked as professors,
clerks, farmers, engineers, astronomers, nurses, and philosophers.
The diversity of their backgrounds testifies that mathematical tal-
ent is independent of nationality, ethnicity, religion, class, gender,
or disability.

Pioneers in Mathematics is a five-volume set that profiles the
lives of 50 individuals, each of whom played a role in the develop-
ment and the advancement of mathematics. The overall profiles do
not represent the 50 most notable mathematicians; rather, they are
a collection of individuals whose life stories and significant con-
tributions to mathematics will interest and inform middle school
and high school students. Collectively, they represent the diverse
talents of the millions of people, both anonymous and well known,
who developed new techniques, discovered innovative ideas, and
extended known mathematical theories while facing challenges and
overcoming obstacles.

Each book in the set presents the lives and accomplishments
of 10 mathematicians who lived during an historical period. The
Birth of Mathematics profiles individuals from ancient Greece,
India, Arabia, and medieval Italy who lived from 700 B.c.E. to 1300
c.E. The Age of Genius features mathematicians from Iran, France,
England, Germany, Switzerland, and America who lived between
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geometrical techniques to estimate perimeters, areas, and volumes,
to determine tangent lines, and to trisect angles. In the fourth cen-
tury c.t., Hypatia of Alexandria, the earliest-known woman to write
and teach about higher mathematics, wrote commentaries that
enhanced and preserved the works of earlier Greek scholars.

Generations of mathematicians in India also developed advanced
ideas and techniques in various branches of mathematics. Two
of the foremost Hindu scholars of this period were Aryabhata
and Brahmagupta. In the sixth century, Aryabhata introduced an
alphabetical system of notation to represent large numbers and
developed techniques for estimating distances, determining areas,
and calculating volumes. In the seventh century, Brahmagupta
developed rules for performing arithmetic with negative numbers
and introduced iterative algorithms to find sines of angles and
square roots.

During the next six centuries, Arabic mathematicians further
extended the discoveries of Greek and Indian scholars. The ninth-
century mathematician Muhammad al-Khwirizmi demonstrated
how to solve second-degree equations in the earliest-known text
on algebra. In the 11th century, Omar Khayyim developed geo-
metrical techniques for solving algebraic equations and expanded
on Euclid’s theory of ratios.

In 13th-century Italy, Leonardo Fibonacci wrote about the base-
10 number system and the efficient computational algorithms that
Hindu and Arabic scholars had developed. His book was one of sev-
eral similar works on arithmetic and computation that caused west-
ern Europeans to renew their interest in Greek mathematics and
convinced them to adopt the Hindu-Arabic numbering system.

These 10 mathematicians made additional significant contribu-
tions to the progress of mathematics and science. Thousands more
of their colleagues and countrymen made important mathematical
discoveries that advanced the world’s knowledge. The stories of
their achievements provide a glimpse into the lives and the minds
of some of the pioneers who discovered mathematics.

(ca. 625—ca. 547 B.C.E.)

Tﬁales of Miletus proved the earliest
theorems in geometry. (The Granger
Collection)

Earliest Proofs of Geometrical
Theorems

Thales (pronounced THAY-leez) of Miletus established the study
of natural philosophy in a world dominated by Greek mythology.
His proofs of five theorems in geometry introduced the concept of
logical theory into mathematics. As an astronomer, he pred'lcte.d a
solar eclipse and improved the existing techniques for navigating
by the stars. Thales became known throughout the ancient Greek



2 The Birth of Mathematics

world for his ingenious solutions to practical problems involving
pyramids, donkeys, rivers, and ships.

Early Years

Conflicting historical records place the date of Thales’ birth
between 641 and 625 B.c.E., although the later date is generally
accepted as more accurate. He was born in Miletus, a small town
located 200 miles east of Athens across the Aegean Sea in the
Greek province of Ionia in present-day Turkey. Miletus was a
seaport on the trade routes that linked the Mediterranean world
with India and other countries of the Near East. As Thales trav-
eled outside his local community, he became known as Thales of
Miletus.

Little is known about Thales’ family or his early life. Cleobuline
apd Examyes, his mother and father, respectively, were a dis-
tinguished family, but their careers and achievements are not
known. As a young man, Thales traveled to Egypt and Babylonia
'(rnodern-day Iraq) to pursue his interests in astronomy, mathemat-
ics, and science. He learned how Egyptians used practical geometri-
cal techniques to measure distances and to calculate areas of plots of

farmland. He studied Babylonian astronomy and its use of a base-60
number system.

Natural Philosopher

Around 590 B.c.E., Thales returned to Miletus and established a
school known as the Ionian School of Philosophy, where he taught
science, astronomy, mathematics, and philosophy. In his philoso-
phy classes, he shared with his students his ideas about the meaning
of Iife. and the love of wisdom. He stressed the importance of asking
questions, especially the question “Why?” In all areas of study, he
emphasized that the workings of the world could be explained in
terms of logical, underlying theories.

At the time, Greeks believed that their lives were determined by
the actions of many gods. According to their mythology, the god
D.emeter made crops and animals grow; the god Dionysus made
wine taste sweet or bitter; the goddess Aphrodite made people fall
in love; the god Ares decided who won wars. Thales did not accept

ihales of Miletus &

stories about gods as explanations for why events occurred. He was.
convinced that there had to be natural reasons to explain why the
world behaved as it did.

Like the people of his day, Thales believed the Earth was a
large disk floating on an underground ocean of water. According
to a Greek myth, the god Poseidon, who lived in this underground
ocean, would shake the Farth, causing an earthquake when he
was angry. Searching for a more logical and natural explanation,
Thales reasoned that if waves in the sea could rock boats back and
forth, then waves in this underground ocean could push against the
ground from below, causing it to shake. He taught this theory to the
students at his school and encouraged them to seek similar explana-
tions for other physical occurrences.

Although Thales’ theory about the cause of earthquakes was not
correct, his search for natural rather than supernatural or myst-
cal reasons to explain such events was a radically new approach to
understanding the world. His insistence on natural explanations
and unifying theories that linked a cause with its effect became
known as natural philosophy. Aristotle, in his book Metaphysics,
credited Thales as being the founder of Ionian natural philosophy.
By searching for the laws of nature that explained physical phenom-
ena, Thales paved the way for the development of science.

First Proofs of Theorems in Mathematics

In his school, Thales taught that mathematical ideas were logically
connected to each other rather than being a collection of unrelated
rules. He also believed that mathematical results were true not only
because they agreed with our experiences of the world around us
but also for deeper reasons. Thales searched for a set of basic prin-
ciples and the logic that would allow him to develop all mathemati-
cal properties and rules from them. He called these basic principles
axioms and postulates. A property that could be obtained from
them by a logical argument was called a theorem, and the logical
reasoning was called a proof.

Thales proved five theorems about geometrical properties of
circles and triangles. These results were known to be true, but no
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one had explained why they were true. Thales showed how they fol-
lowed logically from the basic axioms of geometry.

The following are the five theorems Thales proved:

3. If two lines intersect, each pair of angles that open in
opposite directions must be equal to each other. More effi-
ciently stated, vertical angles formed by intersecting lines

are equal.
1. Any line drawn through the center of a circle will divide that

circle into two equal areas. In other words, any diameter
bisects the circle.

© Infobase Publishing

© infobase Publishing

4. If the three vertices (the corner points) of a triangle are points
on a circle, and if one of the three sides of the triangle is a
diameter of the circle, then the triangle is a right triangle.
In other words, a triangle inscribed in a semicircle must be a
right triangle.

2. Ifa triangle has two sides that are equal in length, then the two
angles opposite those sides must also be equal in measure. That
is to say, the base angles of an isosceles triangle are equal.

© Infobase Publishing
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6 The Birth of Mathematics

5. If two angles and the side between them in one triangle are
the same measure as the two corresponding angles and the
corresponding side of another triangle, then the two triangles
are identical to each other. This is the “ASA rule” of congru-
ent triangles.

© Infobase Publishing

The original proofs that Thales gave for these first five mathe-
matical theorems have been lost because he did not write any books
on mathematics and because mathematicians in later years devel-
oped more elegant proofs of these results. Nevertheless, Thales’
teaching that mathematical theorems must be proven redefined the
nature of mathematics significantly. What had been a collection of
techniques for measuring and rules for calculating was transformed
into a powerful system of rational analysis. His emphasis on the use
of logical reasoning from fundamental principles became essential
to the study and practice of geometry and remains a basic charac-
teristic of all branches of mathematics today.

Discoveries in Astronomy

In addition to being a philosopher and a mathematician, Thales
was an accomplished astronomer. In 585 B.c.E., he correctly pre-
dicted an eclipse of the Sun. By studying records that Babylonian

Thales of Miletus 7

astronomers had kept for many years, Thales was able to deter-
mine when the Moon would pass in front of the Sun, blocking
it from view in his part of the world. His ability to foretell this
event and explain why it occurred amazed his Greek country-
men, who believed that the Sun’s disappearance meant that the
gods were mad at them. During his lifetime, he was better known
for making this accurate prediction than for any of his other
accomplishments.

Thales proposed theories to predict and explain the summer
solstice—the longest day of the year—and the vernal and autumnal
equinoxes—the days in the spring and fall when sunrise and sunset
are 12 hours apart. Some historians claim that he wrote an astron-
omy book about eclipses, solstices, and equinoxes, but no copies of
such a book have ever been found.

In addition to studying the Sun, Thales made observations
of the stars. The Greeks had identified many groups of stars
called constellations that seemed to be arranged as the outlines
of the shapes of various animals and people. They gave them
names such as Scorpio, Aquarius, Leo, and Gemini; named
their months after 12 of these constellations; and developed an
intricate theory called astrology that explained how a person’s
personality and fate were determined by the sign of the zodiac
under which he or she was born. Thales did not believe in astrol-
ogy but was interested in how the positions of the constella-
tions could be used to help sailors determine their location and
to guide them to their destinations while at sea. Greek sailors
commonly used the constellation Ursa Major, also known as
the Great Bear or Big Dipper, as one of their chief navigational
guides. Thales identified a new constellation: Ursa Minor, also
known as the Little Bear or the Little Dipper. This group of six
stars—which included the North Star, one of the brightest stars
in the sky—had a more reliable location in the sky. He recom-
mended that sailors rely on this constellation to guide their
travels. This recommendation appeared in a book on navigation
titled The Nautical Star Guide. Although Thales probably devel-
oped the theory, scholars believe that the book was written by a
contemporary named Phokos of Samos.
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Ingenious Solutions to Practical
Problems

Thales’ reputation as a learned man became widespread. Wherever he
traveled, people sought his advice to solve difficult problems. During
a visit to Egypt, the Pharaoh asked Thales to determine the height
of one of the pyramids. As he thought about how to approach this
problem, Thales observed that the shadows of objects in the sun were
different lengths at different times of the day. He reasoned that when
his own shadow was as long as he was tall, then the pyramid’s shadow
would be as long as the pyramid was tall. By employing this simple
principle, he determined the height of the pyramid successfully.

The Greek general Croesus sought Thales’ advice to help his
army cross the river Halys, which was too wide to build a bridge
across and too deep to march through. After some thought, Thales
instructed the general to bring all his men and their equipment
near the riverbank. He then had them dig a canal behind them in
the same direction that the river was flowing. When the ends of the

Thales determined the height of a pyramid by measuring the length of its
shadow. (Library of Congress, Prints and Photographs Division)

Thales of Miletus 9

canal were connected to the river, most of the water flowed from
the river into the canal behind the army and back into the river
further downstream. The army was then able to march through the
shallow waters that remained.

Merchants and sailors who wanted an accurate way to determine
how far a ship was from shore also brought their problem to Thales.
Looking from the shore out to a ship that was leaving or entering their
port, they could estimate how far away it was based on how small it
appeared, but they wanted 2 more exact way to calculate the actual
distance. Thales used his knowledge of similar triangles—triangles
of different sizes that each have the same three angles—to develop a
method for determining this distance precisely. He knew that for such
a pair of triangles, the ratio of two sides of one triangle would be the
same as the ratio of the corresponding sides of the other triangle.

The accompanying diagram illustrates Thales’ technique. From
two points on the shore (labeled 4 and B in the diagram), observe
the location of the ship. Draw a new line through A that forms a

S = Ship

Sea
Shore

© infobase Publishing

Thales developed a geometrical method to determine the distance from shore to
a ship at sea.
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right angle with this line of sight, then draw a line through B that
forms a right angle with this new line. These lines and the lines of
sight from points 4 and B to the ship will create two similar tri-
angles. By measuring the four sides that are on the shore, one can
use the ratios of the corresponding sides to calculate the distances
to the ship. The merchants and sailors, who were very good at tak-
ing measurements and creating right angles, found this technique
easy to use and very valuable.

Legends about Thales

Storytellers preserved and perhaps exaggerated Thales’ greatness
by creating legends about him, even though some of these stories
may not have been true. The philosopher Aristotle told a story that
showed how Thales’ careful observations of the world allowed him
to make a wise business deal. Olives were a very important crop in
Greece. In addition to eating olives with most of their meals, Greeks
also crushed them to collect olive oil that they used for cooking, as
fuel for their lamps, and as an ointment for their skin. Thales had
observed that, for several years, the weather had been unfavorable
for growing olives. Reasoning that the bad weather could not last
much longer, he visited olive orchards, offering to buy the equip-
ment that had been used for crushing olives. The growers, who were
in need of money, sold their olive presses to Thales. That year, the
weather was excellent for growing olives. When the plentiful crops
were harvested and it was time to make olive oil, Thales earned a lot
of money renting out the olive presses to the same people who had
just sold them to him. Soon afterward, Thales sold the presses back
to the growers at fair prices, having demonstrated that he was not
just a problem-solver; he could be a successful businessman as well.
Another story that was told about Thales involved a donkey that
was used to carry bags of salt from a salt mine. According to this
legend, the workers who dug the salt out of the mine would shovel
it into sacks that they placed on the backs of donkeys. The animals
carried their sacks of salt several miles to the seashore, where work-
ers loaded the bags onto ships. Along the way, the donkeys had to
cross a shallow river. One day while crossing the river, one of the
donkeys stumbled and fell. As he lay in the river, most of his salt
dissolved in the water. When he was able to get up, his load was
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much lighter, which made the remainder of the trip mu.ch easier
for him. After that day, whenever he crossed the river, this donk_ey
would fall in the water, lose some of his salt, and finish the trip w1th
bags that weighed much less than they had originally. The men in
charge of the mine asked doctors to examine the donkey to see if it
had an injured leg. When no one could determine why the donkey
kept stumbling in the river, they finally asked Thales for'some helP.
After observing the donkey for a few days, Thales realized that it
was intentionally falling in the water to lighten its load. The next
day, Thales filled the donkey’s bags with sponges instead of salt.
This time, when the donkey fell while crossing the river, the spong-
es absorbed water, making its bags much heavier. After a few days of
carrying wet sponges, the donkey was cured of its bad habit.

The Greek philosopher Plato told a story about Thales and
his deep interest in observing the stars. According to this legend,
when Thales was out looking up at the stars, he fell into a V‘"CH.
A young girl came by and found him in the well unable to climb
out of the deep hole. When Thales told her who he was and what
had happened, she laughed at him. She teased the wise man for
being so intent on the distant stars above his head that he could
not even see what was at his own feet. Plato told this story to make
fun of impractical philosophers who were capable of great abstract
thoughts but could not do simple things.

Other historians tell another story about Thales and a well that
is more credible. In this story, he climbed down into the well to get
a better view of the stars. From deep below ground, the walls of
the well blocked out the light of the moon and other stars, allow-
ing Thales to better see the stars in the portion of the sky that he
wanted to study. In this story, Thales had a sensible reason for
climbing down into the well.

Conclusion

Thales died at the age of 78 in approximately 547 B.C.E. During his
lifetime, he established the study of natural philosophy, revolution-
ized the discipline of mathematics, and made contributions to 'the
science of astronomy. His fame as a philosopher, mathematician,
astronomer, and ingenious problem-solver was known throughout
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the entire Greek world. Storytellers made him the central figure in
so many stories that his name became synonymous with the word
genius, much as the name of Albert Einstein is today. His fellow
countrymen honored his memory by naming him one of the Seven
Wise Men of Ancient Greece—an indication of the respect and
admiration that they had for this brilliant problem-solver.

Thales’ primary influence on mathematics and science was to
establish the need for a theoretical basis and the use of logical rea-
soning. His natural philosophy introduced the ideas that there are
natural explanations for all physical phenomena and that various
phenomena are unified by underlying principles. By proving the
first theorems in geometry, Thales created a logical structure for
the subject and introduced the concept of proof into mathemat-
ics. Without these ideas, there would be no modern scientific or
mathematical theory; science and mathematics would continue to
be a collection of practices that had been observed to work without
an understanding of the theoretical principles that explained why
things work the way they do.
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Pythagoras of Samos

Pythagoras of Samos made early
discoveries.ih number theory and- -
geometry. (The tmage Works) =

Ancient Greek Proves Theorem about
Right Triangles

Pythagoras (pronounced pi-THAG-or-us) of Samos was a math-
ematician and religious leader in ancient Greece. Conducting
some of the earliest work in number theory, he proved funda-
mental properties about groups of numbers that he termed perfect,
friendly, odd, and triangular. Pythagoras discovered the mathemati-
cal ratios that form the basis of musical theory and proposed that
the same ratios exist in astronomy. He gave the first proof of the
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Pythagorean theorem about right triangles and, as a result, dis-
covered irrational numbers. His work with the five regular solids
illustrated the Greek culture’s complicated blending of mysticism
and mathematical theory.

First Student is Paid to Learn

Records from historians, mathematicians, and philosophers of the
third, fourth, and fifth centuries B.c.k. provide contradictory dates
that vary by more than 20 years for Pythagoras’s birth, death,
and the important events in his life. These sources indicate that
Pythagoras was born between 584 and 560 B.c.E. on the island
of Samos off the coast of Tonia (present-day Turkey). Although
it lay 150 miles east of Athens in the Aegean Sea, Samos was a
Greek colony at the time. During the Golden Age of Greece when
Pythagoras lived, Samos was a prosperous seaport and cultural
center of learning.

Details of Pythagoras’s family life are sketchy. Mnesarchus,
his father, was a traveling merchant; Pythais, his mother, raised
Pythagoras and his two older brothers whose names are not known.
At an early age, he showed a talent for arithmetic and music, two
interests that he maintained throughout his entire life. Under
the guidance of the Greek mathematician Thales, who lived in
the nearby city of Miletus, Pythagoras studied mathematics and
astronomy. At the age of 20, he traveled to Egypt and Babylonia
(present-day Iraq), where he Jearned mathematics, astronomy, and
philosophy—the study of the meaning of life.

Many legends have been told about Pythagoras, including the
story of how he became a teacher. After returning to Samos without
any teaching experience and lacking an established reputation as a
scholar, Pythagoras was not able to attract any students. Desperate
to teach, he offered to pay a young boy to become his first student.
Each day he met with the boy on the street, taught him the day’s
lesson, and paid the boy his daily wage. When this arrangement
exhausted Pythagoras’s savings and he informed his student that
their lessons would have to end, the boy offered to pay Pythagoras
to continue teaching him.
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Pythagorean Society Blends Mysticism
with Mathematics

In 529 B.c.k., Pythagoras moved to Croton, a city in southern
Italy, and established a school for adults known as the Pythagorean
Society. He divided the men and women of his school into two
groups. The acoustici, or “listeners,” attended his lectures but could
not ask questions; they learned solely by listening, observing, and
thinking. After five years of studying religion and philosophy,
successful listeners joined the advanced group of students. These
mathematici, or “mathematicians,” had obtained enough knowl-
edge to ask questions and express their own opinions. They stud-
ied a wider variety of subjects, including astronomy, music, and
mathematics. Through Pythagoras’s emphasis on arithmetic and
geometry, the word mathematician eventually came to mean one
who studied numbers.

The Pythagoreans, as the members of the society were known,
followed strict rules of behavior that reflected their founder’s strong
convictions. Since Pythagoras believed in reincarnation—the theory
that, after people died, they were reborn as different animals—the
Pythagoreans ate vegetarian diets, were kind to animals, and never
wore wool or leather. They did not eat beans or touch white roost-
ers because they regarded them as symbols of perfection. Valuing
generosity and equality, the Pythagoreans shared their possessions
and allowed women to participate as both students and teachers,
The Pythagorean Society was given credit for all discoveries made
by the members, and no written records were kept detailing the
activities, teachings, or achievements of the group.

The motto “all is number” expressed Pythagoras’s belief that
numbers were the fundamental nature of being. He taught that each
number had its own distinctive characteristics that determined the
qualities and behavior of all things. One was not considered to be a
number; it was the essence of all numbers. Two represented women
and the differences of opinion. Three represented men and the
harmony of agreement. Four, which could be visualized as a square
having four equal angles and four equal sides, symbolized equality,
justice, and fairness. Five, as the sum of three and two, signified mar-
riage, the union of a man and a woman. As evidenced by expressions
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As evidence that “all is number,” Pythagoras explained how points determine

dimensions.

such as “fair and square” and “a square deal,” these Pythagorean
ideas became a regular part of Greek language and cul.ture. .
Numbers having distinctive mathematical properties fascinated
Pythagoras. He called 7 a magical number because it was the onl'y
number between 2 and 10 that could not be obtalne?d by multi-
plying or dividing two of the other numbers. Equations such as
2x5=10;3x3=9;8=+4=2;and 6 + 2 =3 produced all the
numbers in this range except 7. He discovered thaF 16 was the
only number that could be both the area and the perimeter of the
same square, a square with all sides of length 4, :%nd that 18 was the
only number that could be the area and the perimeter of the same
rectangle, a 3 x 6 rectangle. Pythagoras considered 10 to be holy
because it was the sum of 1, 2, 3, and 4, the numbers that defined
all the dimensions in the physical world: 1 point reprfesented zero
dimensions, 2 points determined a one-dimen‘sional line, 3 points
specified a two-dimensional triangle, and 4 points defined a three-

dimensional pyramid.

Early Research in Number Theory

Pythagoras’s investigations of numbers extended beyond numer-
ology—the mixture of arithmetic, mysticism, and magic—to the
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Pythagoras proved that there is only one square and one rectangle whose areas
are equal to their perimeters.

branch of mathematics known as number theory. He identi-
fied many different groups of numbers based on the arithmetic
properties they possessed, such as the concepts of even and odd
numbers. A number was even if it could be separated into two
equal parts; otherwise it was odd. He further subdivided the even
numbers into the even-odds that could be written as two times an
odd number (such as 6 = 2 x 3), the odd-evens that could be writ-
ten as more than one factor of two times an odd number (such as
12 = 2 x 2 x 3), and the even-evens that only had factors of two
(suchas 8 =2 x2 x2).

Pythagoras categorized numbers that could be arranged into
similar geometric shapes. He called 3, 6, and 10 triangular numbers
and 4, 9, and 16 square numbers because these quantities of dots
could be configured into triangular and square patterns. Oblong
numbers such as 6, 12, and 20 could be arranged as rectangles with
one side being one unit longer than the other. He also studied num-
bers that could be organized into pentagons (five-sided figures),
hexagons (six-sided figures), and other patterns. In addition to
identifying various classes of numbers, Pythagoras and his students
studied properties of these classes of numbers. They proved that
every square number could be written as the sum of two triangular
numbers, that every oblong number was twice a triangular number,
and many other relationships.
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Triangular, square, and oblong numbers take their names from the geometrical
shapes that they form.

42=16=10+6 4x5=20=10+10
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Pythagoras showed that square and oblong numbers are sums of triangular
numbers.

How a number compared to the sum of its factors—those smaller
numbers that divided it—determined three more categories of num-
bers that Pythagoras called perfect, over-perfect, and deficient. A
number such as 6 that was equal to the sum of its factors was perfect;
6 could only be divided by 1, 2, or 3 and was equal to 1 + 2 + 3. An
over-perfect (or abundant) number such as 12 was divisible by too
many numbers; its factors 1, 2, 3, 4, and 6 added up to more th:fln
12. A deficient number such as 15 did not have enough divisors; its
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The divisors of 220 add up to 284, and the divisors of 284 add up to 220.

factors 1, 3, and § added up to less than 15. Through his investiga-
tions, Pythagoras discovered only four perfect numbers: 6, 28, 496,
and 8128. Friendly (or amicable) numbers—two numbers each equal
to the sum of the other’s factors—were even rarer. The numbers 220
and 284 were the only friendly pair that he was able to identify.

Pythagoras’s work with these categories of numbers was the first
systematic research in number theory. Modern number theorists
continue to study the classes of numbers that he identified. Their
work has important applications, including decoding messages and
sending files securely over the Internet.

Ratios in Music and Astronomy

In addition to studying whole numbers, Pythagoras studied frac-
tions. He believed that any measurement could be expressed as a
whole number or as a fraction (also called a ratio) of two whole
numbers. This idea of commensurability formed a basic assumption
for his theory that “all is number.”

Pythagoras discovered that ratios of whole numbers formed the
foundations of musical harmony. As he studied the construction
of musical instruments such as the Iyre, a stringed instrument like
a harp, he noticed that the most pleasing harmonies were pro-
duced by plucking strings whose lengths were in simple ratios. A
string that was half as long as another produced the same tone but

one octave higher. Strings that were % and i— as long as each other

Produced pleasant-sounding chords called fifths and fourths. He
identified the ratios that determined all the notes of the A-B-C-D-
E-F-G musical scale.

pyLNagoras ofr oamos g1

From his observations of the motions of the planets, the Sun,
the Moon, and the stars, Pythagoras developed an innovative astro-
omical theory based on this same pattern of ratios. According to
his theory, the universe was a sphere with the stars moving on its
 outer shell and the Earth sitting at its center. The planets, Sun,
- and Moon rotated in circular orbits around the Earth. Pythagoras
recorded how long it took each body to complete its orbit and
determined the radius of each orbit. According to his computa-
tions, the distances from the Earth to each of the seven heavenly
bodies—the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and
Saturn—generated the same ratios as the seven musical notes A
_through G. He concluded that as the planets moved through the
 universe they created a natural musical harmony that he called the
“Harmony of the Spheres” or the “Music of the Spheres.”
Pythagoras’s discovery of the mathematical ratios of musical
notes remains a fundamental result in the theory of musical acous-
tics. Although his theory of the Harmony of the Spheres gained
widespread acceptance throughout the Greek world, scientists later
disproved it. Some of his other work in astronomy, however, was
. accurate. By observing the curved shadow that the Earth cast on
~ the Moon during a lunar eclipse, he determined that the Earth was
* a sphere. He also theorized correctly that the Earth rotated on its
axis and that the Morning Star and the Evening Star were the same
heavenly body.

- Pythagorean Theore

During his travels to Egypt and Babylonia, Pythagoras had learned
the well-known property of triangles that if the lengths of the
sides of a triangle were 3, 4, and 5, then the triangle had to be a
right triangle. The lengths 3, 4, and 5 were related by the equation
32+ 4 = 5% or 9 + 16 = 25. The Egyptians were familiar with the
principle that, if the sides of a triangle were of lengths 4, 4, and ¢
and they satisfied the equation 4° + b = ¢%, then the triangle had to
be a right triangle. They also recognized that every right triangle
had to satisfy this equation. Although they had not logically proven
these mathematical truths, they accepted them and used them to
design buildings, lay out farmland, and plan roadways based on
right angles. The Babylonians had also discovered that, for any odd
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sides of a right triangle. Using these formulas, they were able to
create an unlimited number of right triangles whose sides were
whole numbers such as 3-4-5, 5-12-13, and 7-24-25 triangles.

Pythagoras created the first proof that in every right triangle, the
lengths of the sides are related by the equation 42 + #? = 2. :fhis
property of right triangles has come to be known as the Pythagorean
theorem, and a set of three numbers that satisfies this equation
such as 3-4-5, 8-15-17, or 20-21-29, are called a Pythagorean tripler
The Pythagorean theorem is one of the most important results in
'rnathematics. It is used in algebra, where it is the basis for calculat-
ing the distance between two points; in analytic geometry, where it
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The Pythagorean theorem states that the sides of every right triangle are related
by the equation a2 + b2 = ¢2,

would form the three
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provides the equations of circles, ellipses, and parabolas; in trigo-
nometry, where it describes a fundamental property of sines and
cosines; and in many other branches of mathematics. The diagram
that Pythagoras used in his proof of the theorem—a right triangle
with a square attached to each of the three sides—remains one of the
most recognizable images in mathematics.

irrational Numbers

Pythagoras’s work on this theorem led him to the controversial
discovery that some numerical quantities could not be expressed
as whole numbers or their ratios. He noticed that the diagonal of a
square, the line joining two opposite corners, cut the square into two

right triangles. If the sides of the square were each one unit long and

the diagonal was x units long, then the sides of each right triangle
satisfied the equation 17 + 12 = x%, or, more simply, 2 = 2°.

To estimate the value of this diagonal length x, Pythagoras
devised a method of calculating the ratios of the pairs of numbers

listed in the following chart. The chart’s first row contained the

numbers 1 and 1. In each subsequent row, the first number was
found by adding the two numbers in the previous row; the second
number was found by adding the first number in that row to the
first number in the previous row.

Pythagoras discovered that the ratios of these pairs of numbers—

3 7 17
2 5 17 etc.—provided better estimates for the length of the

2 1
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The sides and the diagonal of a square are related by the Pythagorean theorem.
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A B Ratio Decimal value
of B/A of B/A
1 1 1/1 1.00000
2 3 3/2 1.50000
5 7 7/5 1.40000
12 17 17112 1.41667
29 41 41/29 1.41379
70 99 99/70 1.41429
169 239 239/169 1.41420
© Infobase Publishing

Pythagoras used this chart of integer ratios to estimate the value of Va.

diagonal but that this sequence of fractions continued forever with-
out becoming equal to the diagonal length. He ultimately proved
that this length, x = V2, called the square root of 2, could not be
written as a fraction. Working with more and more triangles,
Pythagoras and his students found many other lengths, such as V3,
V5, and V6, that could not be written as fractions.

The discovery of these irrational numbers (or incommensu-
rables) contradicted Pythagoras’s belief that everything in the uni-
verse could be expressed in terms of whole numbers and fractions.
At first he required that the members of the Pythagorean Society
swear an oath not to reveal this discovery to anyone outside the
school. According to one legend, when a student named Hippasus
broke this code of silence, he drowned mysteriously at sea. In time,
Pythagoras reluctantly accepted the existence of irrationals and
eventually incorporated them into his further research.

Irrational numbers were a key feature in the five-pointed star,
or pentagram, that became the symbol of the Pythagorean Society.
Members sewed this geometric design onto their clothing or drew
it on the palms of their hands so they could recognize each other.
Each point of intersection of two sides of the pentagram cut the
sides into lengths that formed a ratio known as the golden mean or
golden section. In the diagram below, point B cuts segment AC into

lengths that satisfy the equation % = %}é Both fractions in this
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A
B
C
AC _ AB
AB ~ BC
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_ The Pythagoreans adopted the five-sided star known as the pentagram as their

official symbol.

equation are equal to the golden mean, a value of , OF approx-

_imately 1.618. Pythagoras and generations of Greek architects

and sculptors considered this ratio to be the most beautiful of all
proportions. They used it in their designs of many sculptures and
buildings; most prominently, in the Parthenon in Athens.

Five Regular Solids

Pythagoras’s work with regular solids was another important
advance in geometry. A regular polygon, such as an 'equlla'teral
triangle, a square, or a five-sided pentagon, is a two-dimensional
figure in which all the edges have the same length. A regu}ar
solid (or polyhedron) is a three-dimensional object in .WhICh
every side (or face) is the same regular polygon. At the time of
Pythagoras, mathematicians knew only three ‘regular solxd§—a
triangular pyramid (or tetrahedron) that combined four equilat-
eral triangles of the same size, a cube that could be made from
six equal-sized squares, and a dodecahedron that was constructed



26 The Birth of Mathematics

Pythagoras of Samos 27

J<¢

Tetrahedron Square Octahedron
.
Dodecahedron Icosahedron

© Infobase Publishing

_of the universe. In the 900 years that people studied at Plato’s
 Academy, his teachings about these objects were so influential that
 the five regular solids became known as the Platonic solids.

Around 500 B.C.E., an angry mob burned down the Pythagoreans’
_school. According to one legend, Pythagoras died in the fire.
_ According to another story, he escaped the fire but was chased by a
mob to the edge of a bean field. Not wanting to step on the sacred
ean plants, he stopped and was killed by the angry crowd. Other
historians reported that he escaped the fire and lived the last years
f his life in the nearby city of Metapontum, where he died in 480
.C.E. After Pythagoras died, his followers started new schools in
several other cities, where they carried on his traditions for two
-~ centuries.

Conclusion

After their leader’s death, the members of the Pythagorean Society
made many additional discoveries in mathematics. In algebra, they

Pythagoras proved that there are only five regular solids.

from 12 regular pentagons. Pythagoras discovered how to make
two additional regular solids. He showed that eight equilateral
triangles could be combined to create a shape that he called an
octahedron and that 20 equilateral triangles could form an object
that he called an icosahedron. In addition to discovering these
two new polyhedra, he proved that there were no other regular
solids. His sophisticated argument, based on a thorough under-
standing of the geometry of two- and three-dimensional objects,
demonstrated how advanced he had become in both mathemati-
cal knowledge and logical reasoning.

Although Pythagoras developed the complete theory of regular
polyhedra, these five regular solids were eventually named after the
great Greek philosopher Plato, who wrote about them 150 years
later in his book Timaeus. Plato taught that the tetrahedron, the
cube, the octahedron, and the icosahedron were the shapes of the
atoms of the four elements from which the world was made—fire,
earth, air, and water—and that the dodecahedron was the shape

 developed methods for solving more than one equation at the same
time. They continued Pythagoras’s work in number theory, discover-
ing many properties of prime numbers. The Pythagoreans developed
a theory of proportions that expanded the concept of the golden
. mean. In geometry, they determined how to calculate the sum of
the angles in any polygon as well as the sum of the angles outside
the polygon. They developed the method of application of areas to
construct a square having the same area as a given triangle and intro-
duced the words parabola, byperbola, and ellipse in the process.
Twenty-four centuries after Pythagoras died, the Mathematical
Association of America, one of the professional organizations of col-
lege math professors in the United States, chose the icosahedron as
its official symbol. This figure that he discovered appears at the top of
their stationery and on the covers of all their mathematical journals.
Researchers in number theory continue to investigate many concepts
that Pythagoras pioneered, including odd and even numbers; triangu-
Jar, square, and oblong numbers; perfect, over-perfect, and deficient
numbers; friendly numbers; and prime numbers. The Pythagorean
-~ theorem, irrational numbers, and Platonic solids are tools that mod-
ern mathematicians and scientists continue to use in their research.



€0 11IE DII'L Ul IvidLhermacics

FURTHER READING ===

Heath, Sir Thomas L. “Chapter 5. Pythagorean Geometry.” In A4
History of Greek Matbematics. Vol. 1, From Thales to Euclid, 141—
169. New York: Dover, 1981. A historical look at Pythagoras’s
mathematical work.

O’Connor, J. J., and E. F. Robertson. “Pythagoras of Samos.” In
“MacTutor History of Mathematics Archive.” University of
Saint Andrews. Awailable online. URL: http://turnbull.mcs.st-
and.ac.uk/~history/Mathematicians/Pythagoras.html. Accessed
March 25, 2005. Online biography, from the University of Saint
Andrews, Scotland.

Petechuk, David A. “Pythagoras of Samos.” In Notable Matbematicians
from Ancient Times to the Present, edited by Robin V. Young, 407-
408. Detroit: Gale, 1998. Brief biography.

Reimer, Luetta, and Wilbert Reimer. “The Teacher Who Paid His
Student: Pythagoras.” In Mathematicians Are People, Too: Stories
from the Lives of Great Mathematicians, 8-17. Parsippany, N.J.
Seymour, 1990. Life story with historical facts and fictionalized
dialogue; intended for elementary school students.

Turnbull, Herbert W. “Chapter 1. Early Beginnings: Thales,
Pythagoras and the Pythagoreans.” In The Great Mathematicians,
1-17. New York: New York University Press, 1961. An in-depth
look at Pythagoras’s mathematical work.

von Fritz, Kurt. “Pythagoras of Samos.” In Dictionary of Scientific
Biography. Vol. 11, edited by Charles C. Gillispie, 219-225. New
York: Scribner, 1972. Encyclopedic biography.

(ca. 325—ca. 270 B.C.E.)

Euclid of Alexandria formulated the
principles and technigues that
‘charatterized the study of geom=
etry for 2,000 yedrs. (The Granger
Collection)” :

Geometer Who Organized Mathematics

The ideas developed by Euclid (pronounced YEW-klid) of
Alexandria defined the study of geometry for 2,000 years. Elements,
his book on geometry and number theory, became the model for
the logical development of mathematical theories from first prin-
ciples and remains the most popular math book ever written. Euclid
proved that there are infinitely many prime numbers and devel‘oped
the Euclidean algorithm for finding the greatest common divisor
of two numbers. Attempts to prove his parallel postulate led to the
controversial discovery of non-Euclidean geometries in the 19th
29
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century. His writings dominated the study of geometry for so many
centuries that people simply referred to him as “The Geometer.”

Professor of Mathematics

Although he was born of Greek parents, lived in the Greek world,
and wrote and taught in the Greek language, the details of Euclid’s
life are best known from the writings of Arab scholars who lived
hundreds of years later. According to these sources, Euclid was
born around 325 s.c.x. in Tyre, a large city at the eastern end of the
Mediterranean Sea in present-day Lebanon. His father’s name was
Naucrates, and his grandfather’s name was Zenarchus. After living
for a number of years in the city of Damascus in present-day Syria,
he moved to Athens, the capital of Greece.

Euclid became a student at the distinguished school that had been
established in 387 .c.E. by the Greek philosopher Plato. Since it was
located in the town named Academy just outside Athens, this small
but excellent university became known as Plato’s Academy. For 900
years, people came from all parts of Greece and from many other
countries to learn science, mathematics, and philosophy—the study
of the meaning of life—in the tradition of this famous teacher. Plato
placed such a high value on the study of mathematics that, according
to one legend, he hung a sign over the front door of the academy
that read “Let no one ignorant of mathematics enter here.” All stu-
dents at the academy learned advanced mathematics, and most of the
accomplished mathematicians of the era studied at this school.

Around 300 B.c.k., Euclid moved to Alexandria, Egypt, where he
spent the rest of his life. Because he earned his reputation for the
work that he did while living there, he became known as Euclid of
Alexandria. This large city at the mouth of the Nile River was the
intellectual and commercial center of the Mediterranean world.
The warrior-king Alexander the Great established Alexandria in
332 B.c.E. after he conquered the kingdom of Egypt. He and his
successor Ptolemy built a massive library where they hoped to col-
lect every book in existence. Whenever learned people came to
Alexandria, their books were brought to the library, where scribes
made handwritten copies of them. In this manner, the library
amassed an extensive collection of more than half-a-million books.
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In this city of culture and diversity, Ptolemy also established
an institution for research and scholarly activities known as the
Museum of Alexandria. This university, which was much larger than
Plato’s Academy, attracted the greatest minds from every country to
discuss, learn, teach, and discover new ideas. Fuclid became the ﬁrst
mathematics professor at the museum, where he earned a reputation
as a kind and patient teacher. At the museum, he assembled a laljge
group of mathematicians who built a strong reputation for'domg
research and for discovering new mathematical ideas. GGenerations (?f
scholars continued this tradition, making the Museum of Alexandria
a vibrant research community for 600 years.

Flements

Fuclid’s greatest achievement was Elemenzs, a work in which he
organized and presented all the elementary mathematics known at

the time. Although Euclid called each of the 13 Volumes a “book,”
they were more like the chap-
ters of a single book. He wrote
six chapters on plane geome-
try, four chapters dealing with
properties of numbers, and
three chapters on solid geom-
etry. Each chapter included a
e ) ; sequence of propositions an.d
Emdmmesieipear (7 2 problems. The 465 proposi-
gl ettt () tions presented the rules of
hwmwuﬁm‘“ﬁjﬁj@mﬁ’ mathematics stating what con-
%wmmg;n“gﬁﬂég"%:; — clusions could be drawn .from

: given sets of assumptions.

Each proposition was followed
by a logical argument called

In his famous book £lements, Euclid a proof dlaF . explained why
logically developed the theorems of the proposition was trueci
geometry and number theory from Worked-out examples calle
basic terms, postulates, and axioms. problems illustrated how to
(Library of Congress, Prints and use the propositions in par-
Photographs Division) ticular situations.
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In this book, Euclid started from a simple foundaton—23 basic
terms, five postulates, and five axioms—and developed system-
atically all the known elementary mathematics of his day. The
basic terms were fundamental ideas such as poinz, line, and circle.
Postulates were basic concepts for geometry, such as the idea that
through any two points there could be only one line. Axioms, or
common notions, were ideas that were fundamental to all math-
ematics, such as: "Things that are equal to the same thing are equal
to each other." Where clear and accurate proofs of propositions
existed, Euclid included them. Where known arguments could be
improved, he substituted better ones. He organized the material
into a meaningful sequence so that each chapter was a coherent unit
and the 13 chapters comprised a complete collection.

The first six books of Elemnents presented the rules and techniques
of plane geometry. Book I included theorems about congruent tri-
angles, constructions using a ruler and compass, and the proof of
the Pythagorean theorem about the lengths of the sides of a right
triangle. Book II presented geometric versions of the distributive
law a(b + ¢ + d) = ab + ac + ad and formulas about squares, such as
(@ + b)? =a* + 2ab + B and &> — b = (a + b)(a - b). Books III and IV
covered the geometry of circles, including results about tangent
and secant lines as well as the construction of inscribed and circum-
scribed polygons. The last two books on plane geometry introduced
the theory of proportions and used these results to construct tri-
angles and parallelograms whose sides and areas satisfied specified
requirements.

The next four books, or chapters—VII, VIII, IX, and X—pre-
sented a collection of ideas in number theory. The first of these
books discussed ratios, factors, and least-common multiples of
whole numbers always representing each number as a line seg-
ment. Book VIII presented results about geometric sequences;
plane numbers that have two factors, such as 10 = 5 - 2; and solid
numbers that have three factors, such as 42 = 2 . 3 . 7. The theo-
rems in Book IX provided results about odd, even, perfect, and
prime numbers. Book X, the longest in the work, presented 115
propositions on incommensurable or irrational numbers from a
geometric point of view.
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Euclid used the famous diagram known as the "bride’s chair” to prove the
Pythagorean theorem in Book | of Elements.

The final three books of Elements discussed three-dimensional
geometry. Book XI presented procedures for constructing 2 line

through a point that is perpendicular to a plane and for reproduc-
' ing a boxlike figure known as a parallelepiped. Book XII provided

techniques for calculating the volumes of pyramids, cones, cylin-
ders, and spheres. The final book discussed properties of the five

regular solids.

Original Results in Elements
Most of the material in Flements was not original. Euclid built

on earlier mathematics texts, also called Elements, written in the
fourth and fifth centuries B.c.E. by Hippocrates of Chios, Leon, and

" Theudius. He included the theorems Thales proved about angles,

triangles, and circles. The material on proportions came from the
work of Eudoxus. The first two chapters on plane geometry, many
of the results from number theory, and most of the final chapter on
the construction of the five regular solids were primarily the work

of Pythagoras.
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Mathematicians believe that at least two of the important propo-
sitions presented in Euclid’s Elements were his own discoveries.
Proposition 1 in Book VII introduced a technique now called the
Euclidean algorithm for determining the greatest common divisor
of a pair of numbers, the largest number that divides both of them
without leaving a remainder. Using this algorithm, one can find the

greatest common divisor of 240 and 55 by making the following
sequence of calculations:

240 = 55 leaves a remainder of 20.
55 + 20 leaves a remainder of 15.
20 + 15 leaves a remainder of 5.

15 + 5 leaves no remainder.

Therefore, the greatest common divisor of 240 and 55 is 5. This
simple process, one of the oldest-known techniques in number
theory, is still presented as an important method of solution in
modern textbooks on the subject.

Proposition 20 in Book IX gave Euclid’s ingenious proof that
there were infinitely many prime numbers—whole numbers like
2,3, 5, and 7 that cannot be divided by any numbers other than
themselves and one. In this proof, he reasoned that if there were
only finitely many primes, multiplying them all together and add-
ing 1 would produce a number that either was a new prime or could
be divided by some new prime. Since both cases contradicted the
original assumption that there were finitely many primes, he con-
cluded that there must be infinitely many primes. Euclid’s proof
by contradiction was a masterpiece of logic, a classic result that is
taught in modern college-level courses in mathematical logic.

Although other mathematicians had written books similar to
Elements, none of them had the same impact as Euclid’s work. His
book set a new standard for mathematical reasoning and explana-
tion. All later mathematical writers embraced his use of logical
proofs based on first principles. His ideas on geometry so domi-
nated that branch of mathematics that for centuries mathematicians
referred to him as “The Geometer.” In the past 2,300 years, more
than 1,000 editions of Elements have been published in dozens of
languages. When the printing press was invented in the 15th centu-
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ry, it was the first math book to be printed. More copies of Euclid’s

. Elements have been printed than any other book except the Bible,

and more students have used this book than any other textbook on
any subject.

Criticisms of Euclid’s Methods

Euclid understood that mathematics was useful for solving practical
problems such as building bridges, designing efficient machines,

~ and operating successful businesses, but he believed that the

real value of mathematics was that it developed a person’s mind.
Studying mathematics enabled a person to become a disciplined
thinker, to make logical arguments, and to appreciate abstract con-
cepts. Mathematics searched for truths that existed outside of the
human mind; it was not colored by emotions or opinions. For these
reasons, he thought every intelligent person would benefit from a
thorough study of mathematics.

His students did not always share Euclid’s enthusiasm for the
beauty and value of mathematics. According to a popular leg-
end, when a discouraged student asked what he would get from
learning mathematics, Euclid told one of his slaves to give the
young man a coin so that he could make a profit from his stud-
ies. According to another legend, when the emperor Ptolemy
attended Euclid’s lectures on geometry, he became frustrated by
Euclid’s thorough and rigorous progression through the material.
Accustomed to having clothing, furniture, a chariot, and even
royal roads for his exclusive use, Ptolemy asked if there was an
easier way to learn the subject. Euclid replied, “There is no royal
road to geometry.”

Even other mathematicians criticized Euclid for including in
Elements the proofs of properties that were clearly true. They
argued that it was obvious to anyone, even to a donkey, that the
sum of the lengths of any two sides of a triangle had to be greater
than the third side. Euclid explained that he proved this principle
from other postulates and propositions rather than accepting it as
an assumption in order to develop all of elementary mathematics
logically from as few basic statements as possible.
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Euclid’s controversial fifth postulate states that lines m and n must meet if
angles A and B are less than 180°.

Parallel Postulate

The first four postulates in Flements were simple ideas, but the fifth
postulate was more complicated. This statement about the angles
formed by three intersecting lines meant that, given a point and a
line, there was only one line that could be drawn through the point
that did not eventually meet the other line. Two such lines that did
not meet (or intersect) were said to be parallel. Mathematicians tried
unsuccessfully to show that this parallel postulate was really a propo-
sition by attempting to prove that it followed logically from the other
postulates. The system of geometry that included Euclid’s five pos-
tulates became known as Euclidean geometry. In the 19th century,
several young mathematicians proved that the parallel postulate was
an independent assumption that could not be proven from the other
postulates. Substituting different postulates about parallel lines, they
created mathematical systems called non-Euclidean geometries.
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In Euclid's geometry, there is only one line through point P that does not meet
line /.
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In 1854, German mathematician Georg Riemann developed a
theory about geometry on the surface of a sphere. In this geometry,
he defined lines to be the “great circles” that passed through two
points on the opposite ends of a sphere. On the surface of a globe,
_ the lines of longitude that pass through the North and South Poles
 are examples of great circles. In this geometry, there were no paral-
el lines; any two lines would have to meet in two points. As a con-
sequence, the angles in any triangle added up to more than 180°,
rather than exactly 180° as in Euclidean geometry.
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In Riemann’s geometry, every line through point P must meet fine l.

In 1826, Russian mathematician Nicholas Lobachevsky devel-
oped a different non-Euclidean geometry on a pseudosphere—a
surface that looked like two trumpet horns glued together. In
this geometrical system, there were infinitely many lines passing
through a given point that did not intersect a given line. It fol-
lowed logically that in every triangle, the three angles added up to
less than 180°. Hungarian Janos Bolyai in 1823 and German Carl
Friedrich Gauss in 1824 also discovered the existence of hyperbolic
geometries with infinitely many parallel lines and triangles whose
angles summed to less than 180°.
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In Lobachevsky's geometry, there are infinitely many lines through point P that
do not meet line /.

Initially, the mathematical community reacted negatively to the
discoveries of these non-Euclidean geometries and criticized the
mathematicians who discovered them. Eventually, mathematicians
realized that non-Euclidean systems were legitimate, that they did
not diminish Euclid’s work, and that they had practical applications
in physics and other sciences.

In addition to writing Elements, Euclid also wrote 15 other books on
various topics in mathematics and science. His plane geometry text
Data gave a compilation of facts involving proportions, triangles,
circles, parallelograms, and other figures. This work, which may have
been a companion book to Elements, presented the conclusions that
could be drawn from knowing the lengths, areas, or proportions of the
various geometrical components in 95 different situations. On Divisions
of Figures explained how to cut circles, rectangles, and triangles into
smaller pieces having particular sizes and shapes. Its 36 propositions
showed how to draw a line that cut a triangle into a trapezoid and 4
triangle having equal areas, how to draw two parallel lines that cut
off a desired fraction of a circle, and how to create a rectangle whose
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Euclid’s On Divisions of Figures explained how to create geometrical figures
having specified areas and edge lengths. The area and the base of this triangle
are equal to the area and the base of a 2 x 2 square from which a smaller 1 x 1
square has been removed.

area was the same as another rectangle from which a square had been
removed. The solutions of these types of geometrical puzzles required
a deep understanding of the principles of plane geometry.

Two of Euclid’s physics books provided the mathematical basis
for scientific theories from optics and astronomy. In Optics, he dis-
cussed the laws of perspective and explained the process of vision.
He presented the commonly accepted theory that a person’s eye
sent out rays that travéled in straight lines toward an object being
viewed. Although this theory is incorrect because the human eye
receives light rays that are emitted from a light source or are
reflected by an object, his mathematical explanations accurately
described many other aspects of the process of vision. He explained
why objects of different sizes appeared to be the same size when
they were viewed at certain angles and why parallel lines appeared
to meet. In Phenomena, he presented a collection of theorems from
spherical geometry and used them to present the geometrical basis
for the motion of the stars and planets through the sky. He bor-
rowed much of the material for this book from a similar work called
Sphaerica (On spheres), written a few years earlier by the Greek
mathematician Autolycus of Pitane.
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Euclid wrote 11 other books that did not survive and are known
only because they were mentioned in the writings of later authors.
Conics was a four-volume work in which Euclid collected and rear-
ranged all the known theories about the parabolic, elliptical, and
hyperbolic curves that arise from slicing a cone-shaped object.
Euclid drew most of the material in this work from an earlier work,
Solid Loci, written by his contemporary Aristaeus. Neither of these
texts survived, possibly because by 200 B.c.x. they were superseded
by Apollonius’s Conics, the definitive work on the subject. Euclid’s
Surface Loci was a two-volume work about the geometry of spheres,
cones, cylinders, tori, ellipsoids and other surfaces of revolution
obtained by rotating a two-dimensional figure about a line known
as its axis of revolution. In this work, he discussed curves drawn on
such surfaces, as well as the properties of the surfaces themselves.
Elements of Music discussed the mathematical basis for musical
theory, including Pythagoras’s ratios for the notes of the musi-
cal scale. Pseudaria (Book of fallacies) presented a collection of
incorrect proofs and common mistakes in logical reasoning from
elementary geometry. Porisms was a three-volume work containing
38 lemmas and 171 theorems showing how to construct a point,
line, or geometrical figure possessing desired properties. Examples
of these types of problems included how to find the center of a
circle and how to draw a circle that touched three other given
circles. Historians discovered additional books on mechanics and
music that may have been Euclid’s work, but mathematicians who
analyzed the style in which they were written believe strongly that
other contemporary Greek writers created them.

Conclusion

In the eighth century, when the books written by generations of
Greek mathematicians were translated into the Arabic language,
Euclid’s name was translated as Uclides. When historians discov-
ered these Arabic texts, they noticed that this name was a combi-
nation of the Arabic words wuc/i, meaning “key,” and des, meaning
“measure.” Some scholars wondered if it was merely a coincidence
that the most influential book on geometry, the study of measure-
ment, was written by a man whose name meant “the key to mea-
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suring” or if the works of Euclid had been created by a group of
mathematicians who published their joint writings under this pen
name. Although most mathematicians and historians doubt this
theory of group authorship, it has occurred at other times in thg
history of mathematics. For 300 years after Pythagoras’s death, his

~ followers continued to give him credit for all their mathematical

discoveries, and in the 20th century, a group of French mathemati-
cians published their joint writings under the name Bourbaki.

Although this theory suggests an interesting possibility, math-
ematicians are almost certain that there was a real person named
Euclid who wrote Elements, taught at the Museum of Alexandria,
and ultimately died in Alexandria around 270 B.c.E. His master-
piece, Elements, defined the teaching of geometry for 2,000 years.
Euclid’s insistence that all mathematical theorems be proven logi-
cally from first principles continues to influence the way mathema-
ticians work today.

At the end of all his proofs, Euclid would write three words
meaning “that which was to be proved.” In Latin, these words
translate as quod erat demonstrandum. As a tribute to Euclid, many
mathematicians today continue the tradition of ending their proofs
with the abbreviation of this Latin phrase—QED.
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‘Archimedes of Syracuse

(ca. 287—212 B.C.E.)
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Innovator of Techniques in Geometry

Archimedes (pronounced ark-i-MEED-eez) gf Syracuse established
a reputation as an inventor of practical machines but_became more
famous for his discoveries in mathematics and physics. He devel-
oped the method of exhaustion to estimate perimeteljs, areas, and
volumes. Using the Archimedean spiral, he determlned. tangent
lines and trisected angles. Employing experimental techniques, he
established theoretical principles about levers, pulleys, anfi centers
of mass. His discovery of the principle of buoyancy established the
theory of hydrostatics.
43
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Inventor of Practical Machines

Archimedes was born ca. 287 B.c.E. in the city of Syracuse, an inde-
pendent Greek city-state on the island of Sicily, off the southwest-
ern coast of Italy. In this cultured city, Archimedes’ father, Pheidias,
was well known as a respected astronomer. As the son of a scientist
and a member of the upper class, Archimedes received a good
education. After completing his formal studies in the local schools
of Syracuse, he traveled to Alexandria, the great center of learning
in Egypt. There he studied under the mathematician-astronomer
Canon and the mathematician Eratosthenes, who was head of the
Alexandrian library. In this scholarly environment, Archimedes
became interested in using mathematics to solve practical problems
and in developing new mathematical ideas.

Archimedes quickly established his reputation as a creative
inventor. Observing that farmers living near the Nile River did
not have an efficient system for drawing water from the river, he
designed a large screw enclosed in a long cylinder with a hand crank
attached to one end. When the device was placed at an angle with
its lower end submerged in water, the spiraling motion of the screw
carried water through the device and out the upper end. Egyptian
farmers used the water screw, or Archimedean screw, to draw water
from the river to irrigate their crops. Various designs of this inven-
ton were used throughout the Greek world to drain water from
swamps, to empty groundwater from mines, and to pump seawater
from the holds of ships.

After living for a number of years in Alexandria, Archimedes
returned to Syracuse, where he continued to invent machines and
to study the mathematical principles that made them work. Two of
the mechanical devices he studied in great detail were levers and
pulleys. A lever is a long pole that rests on a pivot point. By pushing
down on one end, a person would be able to lift a heavy object on
the other end. A seesaw, a crowbar, and the oars of a rowboat are
examples of levers. A pulley is a rope wrapped around a wheel. By
pulling down on one end, a person is able to lift a heavy object tied
to the other end. The rope on a flagpole, a bicycle chain, and a win-
dow washer’s hoist are examples of pulleys. People had used levers
and pulleys for hundreds of years before Archimedes was born, but
he was the first person to fully understand the mathematical princi-

ArCNMeaes 01 oyracuse 43

ples that made these simple machines work. He demonstrated these
theories by building intricate machines using combinations of many
ulleys and levers that worked in a predictable and exact manner.

Archimedes was so confident of the power of levers and pul-
leys that he claimed that he could move any object, no matter how
eavy it was. He boasted “Give me a place to stand and I will move
the earth.” His friend King Hieron, the ruler of Syracuse, chal-
lenged him to launch a warship loaded with supplies and soldiers.
Archimedes rigged up an intricate system of pulleys and levers
and, with the slightest effort, set the huge ship into motion to the
_amazement of the king and the crowd of spectators who witnessed
‘the remarkable feat.

King Hieron asked Archimedes to invent weapons that could
e used to defend the walled city of Syracuse from the frequent
ttacks of the Roman armies. Using the principles of levers and
ulleys, Archimedes invented adjustable catapults that could throw
500-pound stones over the walls of the city onto ships entering the
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Archimedes designed curved mirrors and lenses that focused the rays of the Sun
onto the sails of Roman ships, setting them on fire. (The Granger Collection)
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harbor. He invented huge cranes that could reach over the walls,
lift ships out of the water, and drop them back down to sink them.
Archimedes devised machines that could shoot many arrows at once.
He even invented mirrors and lenses in the shapes of paraboloids,
ellipsoids, and hemispheres that could be used to focus the rays of
the Sun onto the sails of ships to set them on fire. The Roman sol-
diers became so terrified of Archimedes’ weapons that if they saw a
rope hanging over the walls of the city, they would turn and retreat
in fear that it might be another of his war machines.

Approximation of Pi Using Inscribed and
Circumscribed Polygons

Although Archimedes became famous throughout the Roman
Empire for inventing the water screw and many war machines, his
mathematical discoveries were much more important. He wrote
more than 20 books about his discoveries in diverse branches of
mathematics and physics. His book Measurement of the Circle intro-
duced new geometrical techniques for calculating distances and
areas. Sand Reckoner presented innovative strategies to solve arith-
metic problems with large numbers. On Floating Bodies explained
his principle of buoyancy. These books and eight others have been
preserved through Arabic and Latin translations. Unfortunately,
at least 15 additional books that were mentioned in the writings
of other mathematicians and scientists have been lost through
the years. Some of his discoveries are known only because he
wrote about them in letters that he sent to his friends Canon and
Eratosthenes in Egypt.

One of Archimedes’ finest mathematical achievements was his
perfection of the method of exhaustion. Originally developed in
the fifth century B.c.E. by Greek mathematicians Antiphon and
Hippocrates of Chios and formalized into a rigorous technique in
the fourth century B.c.k. by Fudoxus of Cnidus, this method pro-
vided a systematic procedure for estimating areas and perimeters of
various shapes using a sequence of simple polygons whose areas or
perimeters approximated the shape being measured. Archimedes
used the method of exhaustion to estimate the value of the number
w (called pi). For centuries, mathematicians had known that the
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distance around a circle (its circumference) divided by the distance
across the circle (its diameter) was a fixed ratio. Centuries later,
this number came to be represented by the Greek letter 1, and the

C
relationship was expressed by the formul = =mor C=w-dIfa

circle’s diameter was one unit long (one foot, one yard, one meter),
then its circumference would be 7 units long. Mathematicians
knew that this constant 7 was slightly more than three but had not
devised an accurate technique for determining its exact value.
Archimedes used the method of exhaustion to develop a multi-
step approach to obtain good approximations for the x‘falue. of . He
started by drawing a circle of diameter one and loca‘gng six equally
spaced points on the circle. He connected eac.h point to the next
by a straight line to form a six-sided figure inside th.e c1rf:le,. called
an inscribed hexagon. Since this hexagon was contained inside the
circle, the distance around its outer edges (its perimeter) had to be
less than the circumference of the circle. Using simple ideas from
geometry, he was able to calculate the perimeter of the inscribed
- hexagon. He knew that this value would be close to, but le§s tban,
. the value of 7. He used the same six points to construct a six-sided
 figure that was bigger than the circle. By determining the perimeter
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Archimedes estimated the circumference of a circle by finding the perimeters of
inscribed and circumscribed polygons.
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of this circumscribed hexagon, he found a number that was also
close to, but greater than, the value of 7. From these two hexagons,
he determined that the true value of  was between 3.00 and 3.47.

He repeated this process by constructing 12-sided figures inside
and outside of the circle. The perimeters of these two figures
revealed that 7 was between 3.10 and 3.22. Repeating this process
with figures having 24 sides, 48 sides, and 96 sides, he determined

that 7 was between 3;——(1) and 3%, that is between 3.1408 and

3.1429. The actual value of 7 cannot be expressed as a fraction, a
mixed number, nor as a number with finitely many decimal places;
the digits after the decimal point never end. To four decimal places,
its value is 3.1416. Archimedes’ approximation was much better than
any other estimate known to the Greeks at the time. He published
this technique and the numerical results in the book Measurement
of the Circle. This book was widely circulated, translated into many
languages, and used by students of mathematics throughout the
Middle Ages. Influenced by Archimedes’ writing, mathematicians
in the next 18 centuries used this method of inscribed and circum-
scribed figures with more and more sides to determine the first 35
decimal places of this important number.

Wiethod of Exhaustion to Estimate Areas

and Uslumes

The Greeks who lived at the time of Archimedes knew how to
determine the exact area of any geometrical shape having straight
sides, such as a hexagon or a trapezoid, by cutting it into a number
of rectangles and triangles and adding up their areas. Using the
method of exhaustion, they could estimate the areas of figures having
curved edges by finding the areas of a sequence of simple geometrical
shapes that more closely approximated the shape being measured.
Archimedes explained how to use this technique to find the area
inside a curve by cutting the figure into slices of equal thickness and
fitting into each slice a rectangle that was as large as possible. He used
the sum of the areas of these rectangles as a first estimate for the area
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Archimedes used the method of exhaustion with a sequence of rectangles to
estimate areas of regions with curved boundaries.

inside the curve. Repeating the cutting process with each slice only
half as thick as before allowed him to create twice as many thinner
rectangles whose areas generated a better estimate for the area inside
the curve. By continuing this process as many times as desired, one
could estimate the area inside the curve to any degree of accuracy.

In his mathematical writings, Archimedes described three variations
of the method of exhaustion using differences, ratios, and approxima-
tions of areas and used them to prove a large number of theorems.
In his book On the Quadrature of the Parabola, he used the method of
exhaustion with triangular approximations to determine the area of a
segment of a parabola. In another book, On Conoids and Spheroids, he
showed how to use the method of exhaustion to determine the area
inside an ellipse. In the previously mentioned book Measurement of the
Circle, he used the differences between the areas of inscribed and cir-
cumscribed polygons to show that the area of a circle was equal to the
area of a triangle whose height was the same as the radius of the circle
and whose base was equal to the circumference of the circle. Since the

area of a triangle is %(base)(height), he showed that the area of the

circle was —1-(7')(2’11'1’), which is the familiar formula 4 = m7°.
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Archimedes was most proud of his proof that the volume of a sphere is
two-thirds of the volume of the cylinder that contains it.

Archimedes used a modified version of the method of exhaustion
to find the surface areas and volumes of three-dimensional objects
that had curved surfaces, such as spheres, cones, and cylinders. He
presented these results in his book On the Sphere and the Cylinder,
which he regarded as his favorite among all of his books. He used
the method of exhaustion with ratios of triangular areas to find the
surface area of a cone. To find the volume of a sphere, he cut the
sphere into slices that were the same thickness and fit into each slice
the largest possible disk. Since the volume of a disk was easy to cal-
culate, he was able to estimate the volume of the sphere by adding
up the volumes of the disks. With thinner and thinner slices, the
disks gave better and better estimates, and he eventually determined

that a sphere with radius » had a volume of V' = 4 .
3

When he discovered this volume formula, Archimedes realized that
if the sphere was enclosed in the smallest possible cylinder, like a ball
fitting snuggly into a can, the volume of the sphere was two-thirds
of the volume of the cylinder. With additional calculations, he dis-
covered that the surface area of the sphere was also two-thirds of the
surface area of the cylinder; that is, 4 = 4772, Archimedes considered
this pair of discoveries to be the greatest achievement of his life. He
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was so fascinated by these results that he requested that a picture of a
phere inside a cylinder be engraved on his tombstone along with the

fraction % Although the location of his grave is no longer known,

the Roman historian Cicero wrote that in 75 B.c.E. he had found the
ocation and seen the legendary engraving on the tombstone.

~ Archimedes was intrigued by the mathematical properties of
eryday objects. He studied the surface areas of the curved knives
lled arbelos used by shoemakers and the traditionally shaped bowls
called salinon that Greeks used to hold table salt. While investigat-
g volumes, he noticed that if a sphere, such as an orange, was
t into slices that had the same thickness, then each slice would
ve the same amount of orange peel as well. It did not matter if it
was cut from the end of the orange or the middle of the orange. If
there were 10 slices all having the same thickness, then each piece

would have —l%th of the orange peel. He presented his analysis of

these interesting shapes in his Book of Lemmas. In his extensive use
of the method of exhaustion to find perimeters, areas, and volumes
of curved objects, he developed most of the fundamental concepts
integration, one of the two major ideas in calculus.

As a practical scientist, Archimedes found the inspiration for many
of his ideas by experimenting with physical models of the objects
that he was studying. He would cut out a piece of metal in a particu-
ar shape and try to balance it on a stick to find its central axis, spin
t on his fingertip to find its center of mass, and weigh it to find its
area. With the observations that he made from these informal exper-
iments, he was able to get an idea of what the mathematical solution
might be. This experimental approach was radically different from
the way that other mathematicians of his time worked. Following
the teachings of the great philosopher Plato, they regarded abstract
mathematics as the only real path to knowledge. They believed
that the physical world and practical experiments would not lead to
wisdom and truth. Archimedes was much freer with his thinking



a¢  1ne BIrtn ot ivigthematics

and was open to learning how things worked by observing the

world around him. In one of his first books, the two-volume work

On the Equilibrium of Planes, Archimedes presented his discoveries
about the laws of levers and the centers of mass of various polygons.
As he did in most of his books, he presented only the elegant proofs
of his theories without explaining how he had discovered these
principles. In the later book On the Method of Mechanical Theorems,
usually called The Method, he described the experimental processes
through which he got many of his ideas that he then developed into
mathematical theories. This book allowed readers to understand
the workings of his brilliant and creative mind.

One of Archimedes’ most difficult and important books was On
Spirals. In this book, he investigated a curve that has come to be
known as the Archimedean spiral. This curve starts at a point (called
its origin) and expands at a steady rate as it spins around. The formula
describing such a curve is 7 = 26. Since a spiral could not be created
using only a ruler and a compass, the mathematicians who followed
Plato’s teachings refused to use it to solve problems. Archimedes
discovered how to use this spiral to cut any angle into three equal
angles—a famous problem called trisecting an angle that mathema-
ticians had been trying to solve for hundreds of years. He was also
able to find the equation of the line that was tangent at any point on
a spiral curve. A tangent line touches the curve at a specified place
and points in the same direction that the curve is headed. Tangent
lines incorporate the fundamental concept of the derivative—the
second of the two major ideas of modern calculus. With tangent
lines and the method of exhaustion, Archimedes almost invented this
important area of mathematics 18 centuries before it was eventually
discovered by Sir Isaac Newton and Gottfried Leibniz.

Many times during his life, Archimedes demonstrated that he
had an incredible ability to see things in a way that no one else did.
Part of this ability came from his intense powers of concentration.
He was able to block out all distractions and think deeply about a
problem for long periods of ime. While sitting by the fire on a cold
evening, he would often rake some ashes from the fire, spread them
on the floor and start drawing diagrams in them to solve a prob-
lem that he had been thinking about for days. After taking a bath,
Greeks usually rubbed oil all over their bodies. While rubbing in
the oil, Archimedes would frequently draw mathematical shapes on
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is skin with his fingernails as he continued thinking about an idea

at had interested him.

King Hieron asked Archimedes to determine whether his new

crown was made from pure gold or if the craftsman had cheated

im by substituting some less valuable metal for a portion of the

old. The crown weighed as much as the amount of gold that
e craftsman had been given, but no one could think of a way to
determine if the crown was pure gold without destroying it. While
etting into the tub for his bath, Archimedes noticed that the level
f the water rose as he sat down into it, and as more of his body
_went into the water, the water rose higher and higher. He realized
at like any object, his body was replacing an amount of water that
as equal to the space it took up (its volume). Archimedes knew he
could use this idea to solve the problem about the king’s crown. In
is excitement over this sudden realization, he jumped from the tub
and, without grabbing his towel or putting on his clothes, he ran
through the streets shouting “Eureka!” meaning “I have found it!”

When Archimedes arrived at the king’s palace, he put the king’s
_crown into a bowl of water and measured how much the water rose.
_Then he submerged an amount of gold that weighed the same as
the crown. When the water did not rise as high as it had with the
' crown, he was able to determine that the crown was not made of
ure gold. One reason that Archimedes was able to make so many
 discoveries was that his mind was always alert for little hints that
gave him the insight to solve big problems.

~ What Archimedes discovered in the tub was that, when an object
is placed into a liquid, the weight of the object will be reduced by
 the weight of the liquid that it replaces. This principle is now known
as the Archimedean Principle of Buoyancy and is a basic law in the
science of hydrostatics, the area of physics that deals with properties
of liquids. In his book On Floating Bodies, he explained the principles
of buoyancy and specific gravity and gave a mathematical develop-
ment of the theory of hydrostatics.

Investigations of Large Numbers

Like his father before him, Archimedes was also interested in astron-
omy. He constructed a model of the universe with moving parts that
showed how the Sun, the Moon, the planets, and the stars moved
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around the Earth. This planetsphere, which was powered by flowing
water, even showed eclipses of the Sun and the Moon. He calculated
the distance from the Earth to each of the planets and to the Sun, as
well as the size of each heavenly body. He used these measurements
to prove a point to other mathematicians who insisted that there was
no number large enough to count all the grains of sand on the beach.
Archimedes proved them wrong by finding a number that was larger
than the number of grains of sand that it would take to fill the entire
universe from the Earth to the farthest stars.

In his book Sand Reckoner, he explained the process by which he
made this huge calculation. He first determined how many grains
of sand would equal the size of a poppy seed. Then he estimated
how many poppy seeds would equal the size of a finger. Continuing
this process, he estimated how many fingers would fill a stadium,
how many stadiums would fill a larger space, and so on. Archimedes
invented names and notations for these large numbers. By multi-
plying all these numbers together, he obtained a result that was in
the “seventh power of a myriad-myriads.” The technique he used
to write down such a large number provided the basic idea that
other mathematicians used many years later to invent our current
exponential and scientific notations. Today we would recognize this
huge number as 10%, a one followed by 63 zeros.

Archimedes became famous for his ability to solve complicated
problems. His reputation was so widespread that whenever someone
had a difficult problem to solve, especially one that involved large
numbers, they would call it an Archimedean problem. The name
implied that the problem was so hard that it would take someone as
brilliant as Archimedes to solve it. One such problem was the Cattle
Problem, which involved eight variables representing the number
of cows and bulls of four different colors that satisfied eight equa-
tions. The solution involves eight numbers that are so large that it
would take 600 pages to write them down. Archimedes included the
statement of this problem, without its solution, and other similar
“recreational” problems in his Book of Lemmas.

Less than half of the books Archimedes wrote have survived
through the years. He wrote books on various topics in geometry—
On Touching Circles, On Parallel Lines, On Triangles, On the Properties
of the Right Triangle, On the Division of the Circle into Seven Equal
Parts, and On Polybedra—that are known only because they are
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. mentioned in the writings of other mathematicians. Several of his
 scientific books—FElements of Mechanics, On Balances, On Uprights,
_ On Blocks and Cylinders, and Catoptrics—were cited by other scholars
but have been lost. A number of works on other topics—On Data,
- The Naming of Numbers, and On Water Clocks—are also missing.
In 1906, while examining a 12th-century prayer book, a research-
_er discovered some faint writing in the background that had been
partially erased from the parchment. He determined that the
underlying text was a 10th-century copy of several of Archimedes’
works, including portions of The Method. This 174-page book
. known as Archimedes’ Palimpsest is the oldest-existing copy of his
 written works. In 1998, an anonymous billionaire bought the rare
book at an auction for $2 million and loaned it to the Walters Art
- Museum in Baltimore, Maryland, where researchers continue to
clean, preserve, and translate it.
In 212 B.c.E., when Archimedes was 75 years old, the Roman
_army finally conquered Syracuse. On the day of the Roman inva-
sion, Archimedes was one of the only residents not celebrating at
a festival. He was drawing a diagram in the sand to solve a math
- problem when a soldier ordered him to get up and come with him.
- Archimedes told the soldier to move out of his light and wait until
 he finished solving the problem. The impatient and angry soldier
killed Archimedes with his spear.

Conclusion

. During his career, Archimedes solved almost all of the major prob-
lems in mathematics that had been unanswered at the time. With his
perfection of the method of exhaustion to estimate areas and his use of
the spiral to determine tangent lines, he came very close to inventing
calculus 18 centuries before it was ultimately discovered. The experi-
mental approach he used to attack geometry problems challenged the
accepted wisdom of his day. His work with curved areas and surfaces
advanced tremendously the state of geometry. The calculations he
performed with very small and very large numbers introduced new
techniques in arithmetic. Because his many original and significant
discoveries demonstrated such powerful insight, mathematicians
rank Archimedes with Sir Isaac Newton and Carl Friedrich Gauss as
one of the three greatest mathematicians of all time.
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‘Hypatia of Alexandria wrote. £
on:classic

First Woman of Mathematics

The Greek mathematician and philosopher Hypatia (pronounced
hi-PAY-shuh) of Alexandria is the first woman known to have taught
and written about mathematics. Her commentaries enhanced and
preserved classic works of ancient mathematicians. She was a Neo-
Platonist philosopher, a teacher of mathematics, and a respected
scientist. Her brutal murder by an angry mob marked the end of
seven centuries of intellectual culture in Alexandria, Egypt.
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The “Perfect” Human Being

Hypatia was born in the city of Alexandria, Egypt, during the last
half of the fourth century. The details of her life are known primari-
ly from four sources: The Letters of Synesius of Cyrene, which includes
several pieces of correspondence from her student Synesius; an
excerpt from the historian Socrates Scholasticus’ fifth-century work
Ecclesiastical History; an entry in The Chronicle of Fobn, Coptic Bishop
of Nikiu, written in the seventh century; and a passage from the
10th-century encyclopedia Suda Lexicon. The conflicting informa-
tion from these historical records places her date of birth between
350 and 370 c.E.

Seven centuries earlier, when the warrior-king Alexander the
Great conquered the kingdom of Egypt, he decided to build a
great city at the mouth of the Nile River. He designed the city to
be a military stronghold, a hub of international commerce, and
the world’s greatest center of knowledge and learning. He and
his successor, Ptolemy I, built a large library with the goal of col-
lecting every book that had ever been written. They established
a policy that whenever learned people came to Alexandria, their
books would be brought to the library, where scribes would make
handwritten copies of them. The copies were then placed in the
library, where they were made available to the public. Ptolemy
also established the Museum of Alexandria as a university where
scholars from every country could gather to discuss, learn, teach,
and discover new ideas. Many important discoveries were made by
Greek mathematicians living and working in Alexandria.

Hypatia’s parents were among the well-educated citizens of
Greece who were attracted to this beautiful city at the center of the
civilized world. Her father, Theon, was a professor of mathematics
and astronomy at the museum. In addition to teaching, he wrote
about eclipses of the Sun and the Moon and edited existing math-
ematics and astronomy textbooks to make the material more acces-
sible to his students. He was eventually appointed to the position
of director of the museum. Hypatia was an only child; her mother
died when she was very young.

Theon devoted himself to the idealistic goal of raising his
daughter to become the “perfect” human being, enabling her to
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reach the full potential of her physical, mental, and spiritual abili-
ties. Following a fitness routine that her father had devised for her,
Hypatia spent many hours each day running, hiking, horseback
riding, rowing, and swimming. Theon often accompanied her in
these physical activities. Her father also designed a challenging
educational program to develop her mental abilities. Under his
instruction, Hypatia learned to read and write, do math and sci-
ence, debate, and speak in front of an audience. Accompanying her
father to the museum each day, she read the classic works of Greek
literature and was exposed to the ideas of the ancient philosophers
and scholars.

In the environment that the museum, library, and city provided
to her, Hypatia became an excellent public speaker and excelled in
mathematics and philosophy—the study of the meaning of life. To
complement her academic education, she traveled to Greece and to
other countries around the Mediterranean Sea. As she visited these
countries and met many new people, she developed an understand-
ing of various cultures and a respect for different traditions and
points of view.

\ Commentaries on Classical
Mathematics Bocks

When she returned to Alexandria, Hypatia joined her father at
the museum, where she taught courses in mathematics and phi-
losophy. Although ‘she rapidly established her reputation as an
excellent teacher and attracted a loyal following of students, her
mathematical writings had a greater impact on future generations
of students. Hypatia worked with her father to revise and update
classic mathematics texts. In her time, these were called “commen-
taries”; today such works would be called “edited versions.” Writers
of commentaries made corrections, revised some explanations, and
added material that had originally been presented in other books
that were no longer available. They updated the books by including
new discoveries that had been made since the time that the books
had first been written. Hypatia, Theon, and other professors used
these new books to teach their students at the museum. Traveling
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scholars brought copies of the commentaries to universities in other
countries, where they were translated into Latin, Arabic, and other
languages.

Hypatia and Theon worked together to produce a commentary
on Euclid’s Elemnents. This book, considered by academic scholars
to be the most influential textbook ever written, had been created
700 years earlier by the museum’s first mathematics professor, the
Greek scholar Euclid. In 13 chapters that Euclid called “books,”
he had logically and systematically presented all the elementary
mathematics that was known at the time so university students
could study from a single textbook. Theon and Hypatia corrected
mistakes that had been made in earlier copies of the book and
expanded some explanations to make the material easier to under-
stand. They also hoped to preserve this mathematical knowledge
for future generations. The edition of Elements that they prepared
was so highly regarded that it became the standard edition of the
text for the next thousand years. Although hundreds of versions of
Euclid’s Elements were prepared by other mathematicians through-
out the centuries, Theon and Hypatia’s edition remained the one
most frequently used and was considered to be the most faithful to
the original manuscript.

Independent of her father, Hypatia wrote commentaries on three
other mathematics books—Diophantus’s Arithmetic, Ptolemy’s
Handy Tables, and Apollonius’s Conics. In these important math-
ematical works from three different centuries, each author had
presented the most advanced knowledge in a particular branch of
mathematics. Hypatia’s broad understanding of mathematics and
its applications, as well as her experience as a teacher, enabled her to
improve upon the versions of these works that existed in her day.

Hypatia’s first commentary was on the book Arithmetic. Written
by the Greek mathematician Diophantus around the year 250, this
book presented a collection of 150 word problems drawn from all
areas of mathematics. After stating each problem, the author pre-
sented one or more mathematical equations that represented the
relationships between the unknown quantities and gave a method
of solution using techniques from algebra. In this book, Diophantus
introduced a systematic notation for representing exponents beyond
the square and cube as well as a method for dealing with coeffi-
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_cients. Hypatia added two types of material to Diophantus’s work.
-She included a technique for solving a pair of simultaneous equa-
tions—two equations relating the same variables that needed to be
solved at the same time. In modern algebraic notation, the system
of equations is represented as x —y = 2 and x° — y* = m(x — y) + b for
'specified values of the constants #, b, and z. Historians do not know
whether she invented this method or whether it was discovered by
other mathematicians after Arithmetic was first written. She also
“added steps at the end of many problems showing readers how to
verify that their solutions were correct. '
Hypatia wrote another commentary on the book The Astronomical
Canon that had been written by the astronomer Ptolemy around the
year 150. This book, also published under the title Handy Tables,
contained lists that gave the lengths of the arcs of a circle that were

cut out by angles as small as of a degree. These calculations
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were used by astronomers, sailors, land surveyors, and others whose
work involved geometry. Theon, who had published an earlier
commentary on these tables, stated that the quality of his daughter’s
work surpassed his own. Historians disagree about whether Theqn’s
praise for Hypatia’s work was sincere or whether he was attempting
to enhance her reputation as a scholar.

The third commentary written by Hypatia was on the book Conics
that had been written by the Greek mathematician Apollonius
around 200 s.c.e. This book
described how the three
important curved shapes—the
ellipse, the parabola, and the
hyperbola—could be obtained
by slicing a double cone with a
flat plane. An ellipse describes
the orbit of a planet around
the Sun as well as the path
traveled by an electron in an
atom. A parabola is the shape
used to design reflectors for
flashlights and cables for sus-
pension bridges. Hyperbolas

R s

Apollonius’s Conics was one of three
classic works for which Hypatia
produced a valuable commentary.
(Library of Congress, Prints and
Photographs Division)
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Hyperbola

The intersection of a plane and a double cone will produce one of three conic
sections—ellipse, parabola, or hyperbola.

are used in the design of cooling towers at power plants; they also
describe the paths of some comets. All three curves are used in the
design of antennae, telescope lenses, and television satellite dishes.
This book remained the most advanced work on these important
curves for another 1,300 years.

Famous Teacher, Philosopher, and
Scientist

In addition to becoming well respected for her mathematical writ-
ings, Hypatia developed a reputation as an excellent speaker and
teacher. She gave public lectures and private lessons on mathemat-
ics and philosophy. When she taught or spoke, Hypatia would
dress in the long, flowing robes traditionally worn by philosophers
of her time. She taught her students to have respect for different
perspectives and competing points of view on controversial issues.
Her teachings on philosophy incorporated the ideas of Plato, who
encouraged people to seek knowledge and to develop their spiritual
side, as well as the ideas of Aristotle, who emphasized logic and the
analysis of the physical world.

After earning a strong reputation as a teacher at the museum,
Hypatia became the head of another school in Alexandria—the
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Neo-Platonic School of Philosophy. Neo-Platonists believed that
the goal of life was to focus less on the physical world of the body
and more on the higher spiritual world of the mind and the soul.
People traveled to Alexandria from many different countries to hear
Hypatia speak and to learn from her. Her home and her school
became gathering places where educated people discussed and
learned mathematics and philosophy.

In Alexandria at the time of Hypatia, many women were well
educated, but few women taught at universities, and it was very rare
for a woman to be a leader in her field. Hypatia’s accomplishments
as a respected leader in two fields—mathematics and philosophy—
indicated her stature as a leading intellectual of her era.

Hypatia was also a respected member of her community. She was
asked by friends to speak to government officials on behalf of needy
people. The citizens of Alexandria knew her to be a generous, kind,
and caring individual. She never married, freeing her to devote her
life to writing, teaching, and works of charity.

Hypatia was also a capable scientist who possessed practical skills.
‘She designed two scientific instruments for her friend and former
student Synesius, who eventually became the Christian bishop of
the city of Ptolemais. A collection of the letters that he wrote to
friends and colleagues was published as The Letters of Synesius of
Cyrene. In his letters to Hypatia, Synesius thanked her for designing
an astrolabe and a hydrometer for him. An astrolabe was an instru-
ment used by sailors to determine a ship’s location by measuring
the positions of the stars. Hypatia did not invent the first astro-
labe; it had already been in use for a hundred years. As a scientist
and teacher, Hypatia was able to clearly explain to her friend the
instructions for making and using an astrolabe. A hydrometer was
an instrument that measured how heavy a liquid was compared to
an equal volume of water. Historians believe that Synesius probably
used the hydrometer that Hypatia designed for him to mix his own
medicines or to diagnose his health problems.

Brutally Murdered

By the early fifth century, the city of Alexandria became involved
in rapid social changes. The Museum of Alexandria, its valuable
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collection of books, and the intellectual culture that surrounded it
were no longer priorities for the Romans who ruled Egypt nor for
the residents of Alexandria. Political leaders struggling to maintain
their authority felt threatened by the large groups of enthusiastic
followers who attended private meetings at Hypatia’s home, lec-
tures at her school, and speeches that she gave in public gather-
ings throughout the city. Local leaders of the Christian and Jewish
churches thought that her mathematical and scientific ideas con-
tradicted the teachings of their religions and that her philosophical
ideas were attracting the followers of their religions.

In 415, Hypatia became entangled in a dispute between a group
of Christians led by Cyril, the archbishop of Alexandria, and the
supporters of Orestes, the government prefect of Alexandria.
After many members of both groups suffered violent deaths, the
feud reached its peak. As Hypatia was riding through the streets
of Alexandria in her chariot on her way to giving a speech, an
angry mob surrounded her. They dragged her from her chariot,
beat her, and threw her to the ground. They tore off her clothes,
cut her body into pieces, and burned them. The dispute was

An angry mob dragged Hypatia from her chariot and murdered her. (ARPL/
Topham/The Image Works)
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promptly settled, but no one was ever arrested nor punished for
this violent incident.

Conclusion

Hypatia’s death marked the end of the era of intellectual enlight-
enment and the advancement of knowledge that had thrived in
Alexandria for 750 years. After she was murdered, many scholars
left the city and moved to Athens or to other centers of learn-
ing. In the next decades, foreign invaders and rebellious citizens
attacked the buildings of the great university and vandalized the
brary, burning many books to heat the water at the public baths.
Theon and Hypatia’s version of Euclid’s Elements and Hypatia’s
commentaries on Diophantus’s Arithmetic, Ptolemy’s Handy Tables,
and Apollonius’s Conics were preserved only through the copies that
had been brought by scholars to cities in the Near East, where they
were translated into Arabic. Any philosophical writings that she
may have created were permanently lost.

Hypatia’s uniqueness as an intellectual woman in a male-
dominated culture and the violent manner of her death have caused
her story to be retold by historians and writers through the centuries.
Historical texts from the fifth, seventh, and 10th centuries tell the
story of her life and death and of her contributions to mathematics
and philosophy. In 1851, English novelist C. Kingsley dramatized
the story of Hypatia’s life and of her murder in his book Hypatia.
Brief biographical portraits were included in popular collections of
short stories such as E. Hubbard’s 1908 book Little fourneys to the
Homes of Great Teachers. In the 1980s, modern-day scholars estab-
lished the journal Hypatia, in which they publish scholarly papers
‘written by women about issues in philosophy and women’s studies.
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(476—550 C.E.)

Aryabhata wrote an influential
treatise on mathematics and
astronomy. (Dinodia/The Image
Works)

From Alphabetical Numbers to the
Rotation of the Earth

Aryabhata I (pronounced AR-yah-BAH-tah) wrote one of India’s
most enduring treatises on mathematics and astronomy. The
alphabetical system of notation he developed used combinations
of consonants and vowels to represent large numbers. He pre-
sented efficient methods for calculating cube roots, formulas for
summing series of numbers, and algebraic methods for solving
indeterminate linear equations. The table of sines and the esti-
mate for m that he promoted remained in use for centuries. In
67



